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Abstract The detection of structural similarities of process models is
frequently discussed in the literature. The state-of-the-art approaches
for structural similarities of process models presume a known subgraph
that is searched in a larger graph, and utilize behavioral and textual
semantics to achieve their goal. In this paper we propose an approach
to detect reoccurring structures in a collection of BPMN �.� process
models, without the knowledge of a subgraph to be searched, and by
focusing solely on the structural characteristics of the process models.
The proposed approach deals with the problems of subgraph isomorphism,
frequent pattern discovery and maximum common subgraph isomorphism,
which are mentioned as NP-hard in the literature. In this work we present
a formal model and a novel algorithm for the detection of reoccurring
structures in a collection of BPMN �.� process models. We then apply the
algorithm to a collection of �,��� real-world process models and provide
a quantitative and qualitative analysis of the results.

Keywords: BPMN �.�; Process similarity; Graph matching; Structural similar-
ity; Business process management

� Introduction

Business process model similarities is a topic frequently discussed in the litera-
ture [�,�]. It finds application in multiple scenarios, as for example the comparison
or integration of business processes [�]; the validation of processes models [�];
the adjustment of the process models to di�erent target groups [�]; the detection
and refactoring of duplicates (clones) in process model repositories [�, �]; the
detection of di�erent versions of the same process models [��]; or the generation
of process model collections out of re-occurring fragments [��]. The “BenchFlow”
project� has created an additional use case scenario that requires the structural
comparison of process models. The scope of the project is to create the first stan-
dard benchmark for Workflow Management Systems (WfMS) that are compliant
with the Business Process Model and Notation (BPMN �.�) [��] language. In
order to determine a reliable and representative benchmark, special attention

� http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php
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needs to be paid in the definition of the test scenarios (i. e., workload) [��]. The
usage of non-representative workload might result in misleading results [��]. A
prominent role in the workload of a WfMS benchmark play the process models
that constitutes it. Namely, the process models that are given as input to the
performance tests [��]. For defining a set of representative process models, we have
contacted research and industrial partners to collect real-world process models.
Since the process models constitute a corporate asset for the stakeholders, in
most of the cases they were reluctant to share them. In order to overcome this
burden and foster the process models sharing, we have developed tools, that
anonymize the process models, while they keep their structural and, if present,
their behavioral characteristics. This e�ort, has resulted in the collection of ��,���
real-world BPMN �.� business process models, some of which are anonymized,
and some of which are reference, non-executable process models [��].

The analysis of the process models in order to define the workload is twofold.
Firstly, we need to define process models with representative structures that
are also capable to stress the WfMS in terms of performance. Secondly, we
need to artificially simulate a realistic behavior for the defined process models.
The later can be handled with the utilization of existing techniques in process
mining [�] and workload characterization [��]. On the contrary, the first task
requires the structural analysis of our collection, in order to determine the
recurring structures. Given the existence of anonymized and reference models, an
approach is required that should exploit solely the structural information of the

process models (Objective �). Addressing the Objective � can generally be reduced
to the very well known challenge of subgraph isomorphism [��] which is discussed
as NP-complete in the literature [��]. However, as the well-structured BPMN �.�
process models are special types of graphs, i. e., Series Parallel Graphs [��] the
challenge of subgraph isomorphisms can be solved in polynomial time [��]. The
reduction to polynomial complexity indicates the feasibility of developing and
applying a technique that targets BPMN �.� process models.

Although many existing approaches are solving the subgraph isomorphism
problem [�,��,��,��] they assume a given graph whose occurrence is searched in
a larger graph. In our case, however, a known subgraph does not exist. Instead,

we need to identify and extract it based on the structural similarity among a

set of process models (Objective �). To this edge and in order to target both
of the defined objectives, we are reaching the challenge of frequent pattern

discovery without candidate generation which can be seen as a variant of the
subgraph isomorphism [��]. Breuker et al. [�] have applied an extensive research
on the performance of publicly available algorithms for frequent pattern matching
without candidate generation. More particularly, Breuker et al. [�] ran experiments
for the gSPAN [��] and Gaston [��] algorithms to discover frequently occurring
patterns in a collection of thousands of Event-Driven Process Chain (EPC)
process models. In the experiments, the textual semantics are omitted, and the
comparison is applied only with respect to the structural semantics of the process
models (cf. Objective �). In this case, the authors report quick failure of both
algorithms when applied to a collection of thousands of models.
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Figure �: Reoccurring Structures in the Models of Fig. �
This work exploits and combines existing techniques to propose a novel ap-

proach for the e�cient detection of frequently reoccurring structural patterns. The
targeted use case scenario is a collection of BPMN �.� process models. However,
the proposed approach may be generalized to any process modelling language,
by adapting the proposed formal model. More particularly, the contributions of
this work can be summarized as follows; we present: �) the formal model of our
approach, �) a novel algorithm for detecting and extracting reoccurring structures
(i. e., structural similarities) from a collection of BPMN �.� process models and
�) a qualitative and quantitative validation of our approach. The rest of this paper
is structured as follows: Section � discusses a motivating example for introducing
the objectives of our approach; Sect. � sets the formal model of the proposed
approach; Sect. � presents the algorithm that detects and extracts the reoccurring
structures in a collection of BPMN �.� process models. In Sect. � we validate
our approach, and we demonstrate and discuss the qualitative and quantitative
results. The paper closes with related work in Sect. �, and conclusions and future
work in Sect. �.

� Motivating Example

In this work we target the challenge of detecting reoccurring structures in a
collection of BPMN �.� process models. Our approach has a complete focus on
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handling BPMN �.� process models as special types of graphs in order to detect
their structural similarities. Hence, textual semantics or behavioral similarities of
the process models are currently not considered by our approach. Nevertheless,
the proposed approach may be combined with existing approaches on textual
and behavioral similarities [�]. In this way, the detected recurring structures will
be also similar from a content point of view.

Figure � shows two examples of BPMN �.� process models for which we detect
the reoccurring structures. At a first glance, the presented process models are
very similar to each other. Thus, a quick observation leads to the detection of
many reoccurring structures. Figure � shows some of such reoccurring structures
in the process models of Fig. �a and Fig. �b. The demonstrated structures are
only some possible results and not the complete set of reoccurring structures
between these two process models. Focusing on the structures shown in Fig. �a
and Fig. �b we observe that the only di�erence between these two structures is
their starting point. Namely, the structure of Fig. �a begins with a start event,
while the structure of Fig. �b with an exclusive gateway. Both structures stem
from exactly one starting point (i. e., SE1 and SE1

Õ matched to SE1

ÕÕ and EG1 ,
and EG1

Õ matched with EG1

ÕÕ respectively). As seen in Fig. �a and Fig. �b,
both structures constitute maximal common reoccurring structures between the
compared models. Which means that there is not any other larger common
structure between models A and B (Fig. �) stemming from these starting points.

In order to satisfy the purposes of our approach not all possible reoccurring
structures are to be considered. For example, the structure of Fig. �c consists
of two BPMN �.� elements connected with each other. Since this structure
is a minimal building block for any BPMN �.� model we consider it of no
particular structural interest and exclude it from our results. Another more
complex structure that is not considered by our approach is shown in Fig. �d. In
this case, all the BPMN �.� elements of this structure can be mapped to exactly
one BPMN �.� element of either Fig. �a or Fig. �b. However, the structure cannot
exactly be characterized as reoccurring, as it is not fully contained in Fig. �b.
This is because the ’ ÕÕ sequence flow is not connected to T3

ÕÕ. Moreover, not
every element of the structure in Fig. �d is connected to a starting point. Only
all elements of the structures in Fig. �a and Fig. �b can be reached through
the starting points SE1

ÕÕ and EG1

ÕÕ, respectively. For the purposes of this work
we therefore focus only on identifying the non-trivial, reoccurring structures

of maximum size which contain exactly one starting point, out of which every
participating BPMN �.� element of the structure is connected to the source and
can be reached by a common graph traversal algorithm.

� Formal Model

A BPMN �.� model can be seen as a directed, attributed graph G = (V , E) [��]
with n = |V | vertices (denoting the activities) and m = |E| edges (denoting the
sequence flow connectors). Type of a vertex vi is called the function type : V æ La
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that assigns an element from a set La to each vi œ V . The set La contains element
types from the BPMN �.� set as described by the BPMN �.� standard [��].

Zur Muehlen and Recker [��] show that most of the BPMN �.� elements are
not actually applied in practice. What is more, a preliminary statistical analysis
in our collection has indicated that approximately a ��% of the contained process
models contain cyclic structures. Since our approach targets the detection of the

most commonly reoccurring structures of a BPMN �.� collection, the proposed
approach supports the most commonly used BPMN �.� elements [��], while it
does not support cyclic graphs. More particularly, we consider the elements of
the set La = Evt fi Gt fi Tsk only, where:

– Evt is the set of all events types as defined in the BPMN �.� standard (e. g.,
start event, end event etc.)

– Gt is the set of all gateways types in the standard (e. g., parallel gateway,
exclusive gateway, complex gateway etc.)

– Tsk is the set of all tasks types in the standard (e. g., manual task, script
task, service task etc.)

The concept of checkpoints introduces “areas for investigation” in the process
model, as the Evt and Gt elements of BPMN �.� are those di�erentiating the
models structurally. In other words, without Evt and Gt elements, the process
models consisted only of Tsk elements and this is not of any particular structural
interest.

Definition � (Checkpoints) Let L
ch

= L
a

\ Tsk be the set of all BPMN �.�

element types excluding all tasks. The function ch : �(G) æ �(V ) creates a subset

of the vertices of a graph G. The subset contains vertices having a type contained

in L
ch

only when ch : G = (V , E) ‘æ {v | v œ V , v œ L
a

}. In the following, we

use V G
ch as shortcut for ch(G). The elements of a graph G contained in V G

ch are

called checkpoints of graph G.

For example, the checkpoints of the models presented in Fig. � are the vertices
V ModelA

ch = {SE1 , EG1 , EG2 , EE2} and V ModelB
ch = {SE1

Õ, EG1

Õ, EG2

Õ, EE2

Õ}.
Following on, for any directed edge e = (u, v) œ E, we say that e is outgoing

from u and incoming to v. The functions incoming : V æ �(E) and outgoing :
V æ �(E) are defined accordingly. A vertex v œ V is called a source when
incoming(v) = ÿ and a sink when outgoing(v) = ÿ. In our case we assume that
any graph has a unique source, i. e., |{v œ V | incoming(v) = 0}| = 1. In the
following, we call this node of a graph G vG

source. In addition, path of length k
from a vertex u to a vertex w is a sequence v1, ..., vk, vi œ V of vertices that are
connected through a sequence fo edges. More particularly, for the vertices of a
path from u to w it holds that (vi, vi+1) œ E · i < k · vi = u · vk = w · u ”= w.

Definition � (Source connectivity) A graph G is called source connected if

there exists a path of length k, k œ N+
from its source vG

source to any other vertex

v œ V .
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For example, the graph presented in Fig. �d is not source connected, because the
vertex T4

ÕÕ cannot be reached from the source vertex SE1

ÕÕ.

Definition � (Checkpoint-subgraph) We call a source connected subgraph

H of G a checkpoint-subgraph i� vH
source œ V G

ch . The function µ : V G
ch æ CG

ch
maps a checkpoint of a graph G to a set CG

ch of all the checkpoint-subgraphs of

G starting from a particular checkpoint.

It can be seen that all subgraphs shown in Fig. �, except for the Fig. �d, are a
subset of the checkpoint-subgraphs of the models shown in Fig. �.

Moving now to the definition of subgraph isomorphism for our formal model
we are using this provided by Valiente [��].

Definition � (Subgraph isomorphism [��]) A subgraph isomorphism of the

graph G1 = (V1, E1) to a graph G2 = (V2, E2) is an injection M µ V1 ◊ V2 such

that, for every pair of vertices vi œ V1 · vj œ V1 and wi œ V2 · wj œ V2 with

vi œ M · wi œ M and (vj , wj) œ M, (wi, wj) œ E2 if (vi, vj) œ E1. In such a

case, M is a subgraph isomorphism of G1 into G2 and we denote G1 ≥= G2.

In the following we adjust the definitions of common subgraph isomorphism

and maximum common subgraph isomorphism provided by Valiente [��] to be
consistent the formal model of our approach.

Definition � (Common Subgraph Isomorphism (CSI)) A common sub-
graph isomorphism of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph

C = (V, E), V ™ V1 ◊ V2, E ™ E1 ◊ E2 for which it holds: C ≥= G1 · C ≥= G2,

i. e., C is a subgraph isomorphism from both G1 to G2 and vice versa. In this

case we write C , (G1, G2).

In other words, an isomorphic subgraph of two graphs is a CSI when its structure
has a one-to-one mapping in both graphs. For example, the results shown in
Fig. � constitute di�erent common subgraph isomorphisms of the two graphs G1
(Model A) and G2 (Model B) presented in Fig. �. We are interested in principle
in the largest possible such graph, so for this purpose we define:

Definition � (Maximum Common Subgraph Isomorphism (MCSI)) A

CSI C = (VC , EV ) of two graphs G1 and G2 is the maximum common subgraph
isomorphism i� @C Õ = (VCÕ , ECÕ) , (G1, G2) such that |VCÕ | > |VC |.

It therefore follows that the graph shown in Fig. �a is the MCSI of the models
shown in Fig. �. Bringing now the above definitions together, we have:

Definition � (Common checkpoint-subgraph) If two graphs Gch1 œ CG1
ch

and Gch2 œ CG2
ch are checkpoint-subgraphs of graphs G1 and G2, respectively,

then any C , (Gch1, Gch2), C œ CG1
ch · C œ CG2

ch is called common checkpoint-
subgraph. We then define the set M (CG1

ch , CG2
ch ) as containing all MCSIs of the

common checkpoint-subgraphs of two graphs G1, G2.
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We are now ready to define the concept of relevant process fragments as the
output of our proposed approach. More specifically:

Definition � (Relevant Process Fragment (RPF)) A graph C is called a

Relevant Process Fragment (RPF) of a process model collection G
coll

= {G1,. . . ,
Gn} when it holds:

�. C = (VC , EC) œ M (CGi
ch , C

Gj
ch ), Gi, Gj œ G

coll

, i, j = 1, . . . , n (p1)

�. |VC | Ø vmin, where vmin œ N+
(p2)

�. ÷v œ VC : type(v) œ Tsk (p3)

In other words, as RPF we define all the maximum common checkpoint-subgraphs
between any two graphs G1 and G2 of a graph collection (p1). It also follows
from Definitions � and � that an RPF will always have exactly one source that
is of type checkpoint. As seen in Definition � the RPF also have two extra
properties. The first extra property is that the RPF must have a minimum
number of vertices vmin (p2). Since our approach focuses into detecting the most
frequently occurring structures in a collection we have considered the vmin = 5
vertices. This is the minimum threshold from which a BPMN �.� subgraph has
some structural interest. Moreover, tasks have a key role to the substance of any
BPMN �.� process model. Thus, we are interested into detecting these structures
that contain at least one task (p3).

Some examples of RPFs can be seen in Fig. �. More specifically, Fig. �a
and �b show RPFs as they are a) both checkpoint-subgraphs starting from SE1

ÕÕ

and EG1

ÕÕ respectively; b) both MCSIs of Model A (cf. Fig. �a) and Model B (cf.
Fig. �b) for the corresponding checkpoints; c) they have at least � vertices; and
d) contain at least one task element. In contrast, Fig. �c is not an RPF because
although it is a common checkpoint-subgraph of Model A and Model B it does
not satisfy the following requirements: a) it does not have � vertices; and b) it
does not contain a task element. Finally, the subgraph of Fig. �d is not an RPF
because it is not source connected and it does not have one source, i. e., it is not
a common checkpoint-subgraph of the two models. In the following, we discuss
an algorithm that identifies RPFs in a collection.

� RPF Detection Approach

Let G
coll

be a collection of BPMN �.� process models and Gú
coll

the set of pairs
of process models to check for reoccurring process fragments. Gú

coll

is constructed
to be irreflexive and not to be symmetric to avoid two runs for the same pairs
of graphs. Gú

coll

is the maximum set such that: �) Gú
coll

µ G
coll

◊ G
coll

, �) x œ
G

coll

=∆ (x, x) /œ Gú
coll

, �) x, y œ G
coll

, x ”= y =∆ (x, y) œ Gú
coll

Y (y, x) œ
Gú

coll

, where Y denotes the exclusive disjunction. For every tuple (G1, G2) œ Gú
coll

we are executing the RoSE algorithm (cf. Algorithm �) to a) construct the sets
M (CG1

ch , CG2
ch ) (cf. Definition �) for all possible pairs of checkpoints of the

process models and b) to detect the valid RPFs ’ G œ M (CG1
ch , CG2

ch ). The RoSE
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Algorithm � Creates the table of the matched edges of the compared models
Input: G1 = (V1, E1), G2 = (V2, E2): The models to compare. It holds that |E1| Ø |E2|.
Input: V G1

ch , V G2
ch : the sets of checkpoints of the two models G1, G2

Output: RPFcoll : The set with the discovered Relevant Process Fragments
�: function RoSE()

�: RPFcoll Ω ?
�: for each outgoing(V G1

ch as e1) do
�: maps Ω ?
�: map Ω InitializeMapWithZero()
�: for each outgoing(V G2

ch ) as e2 do
�: map Ω CreateMap(e1, e2, map)
�: maps Ω maps fi {map}
�: end for

��: RPFS Ω DetectValidRPFFromMaps(maps)
��: RPFcoll Ω RPFcoll fi {RPFS}
��: end for
��: return RPFcoll
��: end function

algorithm takes as input two process models G1 and G2 for which we need
to detect the RPFs. As a precondition the model with the most edges always
corresponds to G1.The sets of process model checkpoints V G1

ch and V G2
ch are also

given as input to the RoSE algorithm. At the end it outputs the collection of the
detected RPFs.

Before proceeding to a detailed description of the algorithm we need to explain
the involved variables. The variable RPFcoll (line �) stores the collection of the
detected RPFs, which will be returned at the end. The variable map (line �) is an
|E1|◊|E2| incidence matrix in which each cell corresponds to a pair of edges (e1, e2)
where e1 œ E1 and e2 œ E2. It is essentially a sparse matrix with ones in the cells
where the two edges “match”, or zeroes otherwise. Since our approach focuses only
on the structural characteristics of the process models, two edges e1 = (u1, v1)
and e2 = (u2, v2) are considered to “match” when the incident vertices are of
the same type, i. e., e1 ƒ e2 … type(u1) = type(u2) · type(v1) = type(v2). For
example, in Fig. � it holds that – ƒ –Õ (start events connected to exclusive
gateways) and — ƒ —Õ (exclusive gateways connected to tasks) match. The initial
incidence matrix of the process models of Fig. � is shown in Fig. �a and it contains
all the possible edge matches between the two models. For example, – ƒ –Õ,
— ƒ –Õ, — ƒ ’ Õ, etc.

As seen in Fig. �a the matrix may contain more than one ones per row and
per column (i. e., ÀR > 1 or ÀC > 1). However, RPFs contain only one-to-one
matches of edges. This is because the definition of isomorphism they rely on
(Definition �) is an injective function. Therefore, our goal is to reduce the extra
ones per row and column consistently and derive the resulting RPF. By a closer
look on the incidence matrix we observe that multiple ones on the same row
indicate alternative matches of the corresponding edge, e. g., — ƒ —Õ and — ƒ ’ Õ.
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Algorithm � Runs a Depth First Traversal (DFS) on checkpoint-subgraphs
of G1 and G2 starting from a specific checkpoint to compare all the visited
checkpoints with each other and create the indidence matrix (map) accordingly
Input: e1, e2 it takes as input an outgoing edge of a checkpoint of graph G1 and G2

respectively.
Input: map represents the sparse incidence matrix, initialized with zeroes (“�”).
Output: map the sparse indidence matrix that contains ones (“�”) on the cells for

which the edges matched.
�: function CreateMap(e1, e2, map) Û Let e1 = (u1, v1) and e2 = (u2, v2)
�: if (e1 ƒ e2) then Û If the two edges are of the same type (cf. Sect. �)
�: Ou1 Ω outgoing(u1)
�: Ou2 Ω outgoint(u2)
�: map[e1][e2] Ω 1
�: for each Ou1 as o1 do
�: for each Ou2 as o2 do
�: map Ω CreateMap(o1, o2, map)
�: end for

��: end for
��: end if
��: return map;
��: end function

For obtaining the one to one isomorphism we need to choose either — ƒ —Õ or
— ƒ ’ Õ. Let us assume for example that we chose the first match (i. e., — ƒ —Õ). In
this case we need to eliminate the — ƒ ’ Õ from the incidence matrix. We also need
to eliminate the rest of the ones on the — column so that it will not be chosen
for another edge (i. e., row). Similarly it can be concluded that the incidence
matrix should contain at most one one in the ÀR and ÀC for any detected RPF.
In other words, for the detection of an RPF it should hold that for each row
ÀR Æ 1 and for each column ÀC Æ 1.

The challenge at this point is to eliminate the redundant ones of the incidence
matrix consistently. Reducing the graph isomorphisms to tree searches is a
well established technique [��]. To this e�ect, we are introducing a tree which
represents all the possible isomorphic candidates indicated by the incidence
matrix. By traversing each row of the matrix, we are gradually building the tree
that represents all the possible choices (i. e., RPF candidates). The tree that
maps to the incidence matrix of Fig. �a is shown in Fig. �b. It represents all the
possible isomorphic choices that can be produced by the incidence matrix when
gradually eliminating the ones of each row. The root of the tree is the source
node of G2 and each child of the root indicates the possible choices of ones of
the next row. Each tree path from the root to the leaves indicates the set of
edges that build a candidate RPF. For example, for the incidence matrix and
corresponding decision tree of Fig. � we start traversing the matrix from the
cell (–, –Õ) which is the root. The next row (—) has ones in the positions (—, —Õ)
and (—, ‘Õ), we can choose either of one of these. Thus, the root node –Õ on the
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(b) Decision Tree for RPF Detection

Figure �: Incidence Matrix and Corresponding Tree Search

tree has the children —Õ and ‘Õ as they constitute alternative choices of the RPF.
Proceeding now to the next row of the incidence matrix the “ is mapped to “Õ

or ’ Õ. This choice is represented in the tree by putting the “Õ and ’ Õ as children
of —Õ and ‘Õ, i. e., the alternatives produced by the edge — of the previous step.
Similarly, the ones of the row ” will produce the children of the leaves “Õ and
’ Õ produced in the previous step. We are now on the row ‘ where the ones are
on the —Õ and ‘Õ. The ones of these positions have already been used on the first
step (edge –) of our procedure and are already placed as the children of the root.
In this case, we cannot add both as children because each tree path must contain
each edge only once. Therefore, for sub tree of the decision tree that starts from
—Õ we will only add as leaf-children the ‘Õ, while for the sub tree of the tree that
starts from ‘Õ we will add as leaf-children the —Õ. We proceed likewise to build
the rest of the decision tree. With respect the method described above, for the
motivating example (cf. Fig. �), the resulting RPF starting from the checkpoints
(SE1 and SE1

Õ) is the model of Fig. �a which is isomorphic to the complete
model B (cf. Fig. �b). Namely, the resulting RPF is a subgraph of model A (cf.
Fig. �a) and the complete model B (cf. Fig. �b). In this case the tree is presenting
di�erent orderings of the same set of edges (–Õ, —Õ, “Õ, ”Õ, ‘Õ, ÷Õ, ’ Õ, ◊Õ).

For detecting the RPFs of two process models the RoSE algorithm (Algo-
rithm �) exploits the aforementioned constructs of incidence matrix and its
corresponding decision tree. The CreateMap function (Algorithm �) is called
by the RoSE algorithm to compare all possible combinations of the checkpoints
of G1 to the checkpoints of G2 (lines � and �). In this case the checkpoint helps
us reduce the occurring comparisons (line �). When the type of two checkpoints
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do not match (e. g., comparing start event to an exclusive gateway) the com-
parison is terminated immediately and an empty incidence matrix is returned
by the CreateMap function (cf. line ��). If the two checkpoints match, we
start traversing all possible combinations of the edges of the two process models
by using a Depth First Search (DFS) algorithm. During the DFS traversals
(Algorithm �) we are comparing all edges of the process models to each other
and we gradually build the incidence matrix which is stored in the map variable
(done in CreateMap, called in line �). If there is a mismatch between two edges,
the DFS traversal stops for the corresponding path and the map will contain
zeroes to all the forthcoming edges.

When an incidence matrix of a comparison is constructed we insert it to a
set of incidence matrices variables (maps in line �). Then, through the func-
tion “DetectValidRpfFromMaps(maps)" (line ��) we are detecting all the
valid RPFs that occur from each map œ maps based on Definition �, by apply-
ing the tree approach described above. In order to make sure we will choose
the maximal isomorphism from each comparison we sort the paths of the tree
according to their size. Then we validate them one by one against the RPF
properties (cf. Definition �). If we find a valid RPF then the searching on this
tree search is stopped and the RPF is returned. Since the valid RPF contains
the maximum number of discovered edges (as we are using the longest path),
there will be no other RPF with more edges. The definition of the function
“DetectValidRpfFromMaps(maps)" could not be provided due to space limi-
tations. However, its prototypical implementation is available as open source�.

The detected RPFs are inserted into an RPFcoll (line ��) which is the set of
detected RPFs for the given pair of process models (G1, G2). Finally, the detected
RPFcoll is returned by the RoSE algorithm (line ��). The RoSE algorithm is
iteratively called for all the possible distinct pairs of model combinations in the
collection. Each RPF detected for a distinct model combination is compared
with the set of the previously detected RPFs. If the RPF is already detected by
another comparison, it is not added to the results set but is counted as duplicate
entry. In this way we manage to derive statistics for the frequency of occurrence of
the detected RPFs. In previous work [��] we have introduced an initial approach
for deriving the frequency of occurrence of the detected RPFs. In this work we
have extended the presented approach to be compliant with the RoSE algorithm.

To sum up, the proposed methodology uses DFS traversal on the two models
for discovering all possible isomorphisms between their edges and insert them into
the incidence matrix (Fig. �a). By construction the incidence matrix will contain
all possible subgraph isomorphisms between the edges of the two models. We are
then applying a tree search [��] to consistently produce all possible isomorphisms
between the edges of the two process models. Our methodology combines well
established techniques (DFS, incidence matrix, tree search) for the detection of
RPFs between two process models. Thus, if there is one solution our methodology
will detect it as it basically exhausts the search space. Consequently, we can argue
that the proposed methodology is complete. In terms of complexity, due to the
� https://github.com/marigianna-iaas/RoSE
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naïve nature of the decision tree construction in the worst case we are in the area
of O(mn) where m = |E1| and n = |E2|. Furthermore, we need to compare all
possible pairs of graphs in the collection, denoting a factorial time O(k!) where
k is the size of the business process model collection. However, in practice and
due to the sparsity of the mapping table and the low ratio of checkpoints per
model the observed performance, as we will discuss in the following section, can
be achieved in realistic times.

� Evaluation

In order to validate and evaluate the proposed approach we implemented the
RoSE algorithm in a proof-of-concept prototype that utilizes the EMF BPMN �.�
metamodel� and is available in an open source model�. For measurement purposes
we deployed our implementation on a virtual machine in a private cloud solution.
The VM was configured with � MB memory and � CPUs, using the Ubuntu
LTS ��.�� operating system. The complete collection of real-world BPMN �.�
process models collected in the scope of “BenchFlow” project, contains ��,���
BPMN �.� process models coming from the: i) IBM Industry Process and Service
Models�, ii) the BPMN �.� standard, the research by Pietsch et al. [��], iii) the
BPM Academic Initiative� and iv) other research and industrial partners. The
BPM Academic Initiative provides �,��� BPMN models. For deriving the models
we have selected the “BPMN �.� Process” and “BPMN �.�” 100% correctness,
last revision and all available languages and sizes. The process models derived
from the BPM Academic Initiative do not comply with the BPMN �.� standard
serialization in the Extensible Markup Language (XML). Therefore, they currently
cannot be parsed by the EMF BPMN �.� metamodel and consequently our
algorithms. For this reason they are excluded from our collection and we resulted
in a subset of our original collection, which contains �,��� real-world BPMN �.�
process models. Since the RoSE algorithm currently does not support cyclic
graphs, we have also detected and extracted the cyclic process models from our
initial collection. This has resulted to the analysis of �,��� BPMN �.� acyclic
process models, that are given as input for the validation of the RoSE algorithm.
We have set the RoSE algorithm to detect RPFs with size Ø 5, namely the
minimum size an RPF can have. The algorithm ran over all models of the
collection compared pairwise, as discussed in the previous section.

For the aforementioned collection and infrastructure, the RoSE algorithm
executed for � hours and �� min, and detected �� unique RPFs. For determining
the most frequently occurring RPFs we calculate how many times it has been
detected by RoSE (Fig. �). The first five most frequently occurring RPFs of our
collection and the number of comparisons that generated these RPFs are shown
in Fig. �. Figure � on the other hand shows the sizes of the detected RPFs and
� http://www.eclipse.org/modeling/mdt/?project=bpmn�
� https://github.com/marigianna-iaas/RoSE
� http://www-��.ibm.com/software/data/industry-models/
� http://bpmai.org/
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Figure �: Frequency count per detected RPF size

their corresponding size frequencies. As it can be seen, most of the detected RPFs
have a 5 Æ size Æ 30, with the majority of them in the range from size = 13 to
size = 30 (first and third quantile, respectively), with mean size size = 21.69,
median Ásize = 19, and standard deviation ‡size = 11.28. However, there are also
many detected RPFs for even bigger sizes, up to the size 51 (�� of them to be
precise). In most of the cases these RPFs are detected in di�erent versions of the
same process models. Furthermore, most of the models originate from the IBM
Process and Service models collection. It can therefore be concluded that the
modelers are reusing some complex structures as identified best practices. If the
RoSE algorithm is applied on a bigger and more diverse sample, these results
might vary, and more conclusions could be drawn on the modeling practices.

The sizes discussed in Fig. � relate to the whole set of detected RPFs. However,
by the application of the RoSE algorithm we are also interested in the RPFs
that were more frequently detected in the collection. These RPFs are shown in
Fig. �. As seen in Fig. � the most frequently occurring RPF are smaller structures.
However, two more complex structures also appear in the top-� results (Fig. �d
and �e). The RPF shown in Fig. �a is a sub-structure of Fig. �b. Thus, the count
��,��� of Fig. �a also contains the occurrences of the RPF of Fig. �b. By these
two RPFs we can conclude that in almost half of the cases the modelers choose
to conditionally terminate the process. The third RPF (cf. Fig. �c) indicates
a preferred approach of initializing a process. Generally, the first three RPFs
(Fig. �a to �c) basically confirm the widely accepted usage of the well established
control flow workflow patterns and reveal interesting combinations of these [�].
The next two detected RPFs shown in Fig. �d and �e are more complex structures.
Although these two RPFs were extracted almost half the times than the rest of
the detected RPFs, they still reveal modeling techniques that could be exploited
towards enabling process model modeling re-usability.

The RoSE algorithm provides an e�ective mean towards detecting reoccurring
structures in a process model collection. While its e�ciency can be definitely
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improved, it needs to be taken into account that there are no “online” requirements
for this process. Since this process is meant to run only once for each collection
(or every time the collection is updated, which happens very infrequently) then
the total running time per se is not an issue for its operation. Nevertheless,
in future work we aim to improve the performance of the algorithm by using
heuristics-based methods like the one discussed in [��].

� Related Work

Process fragmentation is frequently discussed in the literature [�, ��] and is
accepted to have an important role in the re-usability of process models. Process
fragments are introduced as incomplete process parts that are extended by
adding Business Process Management compliance features [��]. The definition of
Relevant Process Fragments proposed in this work is an extension to the original
definition [��] with particular focus on the reoccurrence of the fragment as well
as its structural properties.

To the extent of our knowledge the approach introduced in this work is the
first complete approach that detects and extracts the structural similarities from
a collection of BPMN �.� process models by relying solely on the structural
information of the process models. A preliminary version of this approach has
been published by Skouradaki et al. [��] and evaluated through an artificial
process models collection. The approach presented in Skouradaki et al. [��] has
also been extended for counting the frequency of occurrence of the detected
RPFs and validated again through the same collection of artificial models [��].
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In the evaluation of this approach using real-life process models we have detected
inconsistencies in the results which are solved by the presented version of the
RoSE algorithm. The methodology for counting the frequency of occurrence of
the detected RPFs preserves the same logic as the one presented in [��] but is
extended to be compliant with the RoSE algorithm. Generally, the presented
version of the RoSE algorithm can be seen as a more comprehensive approach
than the one presented in the previous works. Hertis and Juric [��] conduct an
analysis similar to ours for the Web Services Business Process Execution Language
(WS-BPEL) [��]. In order to detect the reoccurring structures in a collection of
thousands of WS-BPEL process models, they transform the process models to
process trees. Afterwards, they apply tree mining algorithms to detect and extract
the reoccurring structures. Although the ultimate goal of this work is similar to
ours, the di�erent nature of BPMN �.� language does not allow to apply the same
tree mining techniques for similar structures detection. Moreover, in our case
we do not use a given pattern or model to search against the collection, but we
extract the detected reoccurring similar structures, that are originally unknown.
A prototype for the comparison of BPMN �.� process models is introduced
by Pietsch and Wenzel [��]. In this approach it is assumed that the compared
process models are di�erent versions of each other and heuristics based on textual
semantics are used for the results. Although the approach seems very promising
it is argued by the authors that it might not be e�cient to large, complex real
world process models.

As discussed in the introduction already, process model similarities is a
major research stream that branches towards three directions: textual similarities,
behavioral similarities, and structural similarities [�]. The textual similarities
approaches base their comparisons on the labels of the process elements (e. g.,
task labels, event labels etc.), the behavioral similarities exploit the execution
semantics of the process models, and the approaches on structural similarities
compare the textual semantics of the process model as well as their topology [�].
Most of the approaches presented by Dijkman et al. [�] are expected to under
perform for process models with size > 20. On the contrary, our approach has been
applied to much bigger models and has even detected RPFs with 30 Æ size Æ 51.

The APROMORE process model repository [��] is extensively used by the
Business Process Management community for process models comparisons. Simi-
larity search and pattern-based analysis are the features that are more relevant
to the scope of this work. However, the similarity search indicates the percentage
of similarity between two process models, without indicating the exact regions
of similarities for the process models. Likewise, the pattern based analysis is
searching the existince of a certain pattern in a collection of process models.
Therefore, the features supported by the APROMORE [��] repository do not
satisfy the objective of this work. La Rosa et al. [��] propose a method to detect
similar parts of process models. The method relies on textual and behavioral
similarities, thus it could not be applied to our collection.

Similarly, Ivanov et al. [��] present a prototype for detecting the similarities
of BPMN �.� process models by basing on behavioral semantics. Although the
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approaches mentioned above cannot be applied to our business process models
collection, they can be potentially combined with our approach for a more
accurate detection of reoccurring structures, that also considers the context of
the process model. The Refined Process Structure Tree (RPST) is a technique
for fragmenting the process model into single-entry-single-exit (SESE) regions,
out of which we can build a hierarchical tree representation [��]. The RPST has
been utilized for detecting mappings of process models [�, �]. However, in our
case the derived fragmentation will not produce all the possible substructures
that should be examined as reoccurring. Therefore, the RPST is not used by our
approach.

For the development of the proposed approach we have also investigated
existing approaches in subgraph isomorphism and pattern matching techniques.
During our research we were not able to find any approaches that accept graphs
as an input and return the set of reoccurring subgraph isomorphisms, but in
most of the cases a smaller sub-graph is searched and compared to the bigger
graphs [�,��,��]. For the RoSE algorithm we have adopted existing techniques
suggested by [��,��] and customized them for the detection and extraction of
RPFs.

� Conclusions and Future Work

In this work we introduced the RoSE algorithm that detects reoccurring structures
in a collection of BPMN �.� process models. The method has been developed un-
der the needs of defining meaningful test scenarios for benchmarking BPMN �.�
WfMS. However, structural similarities of process models is widely accepted to
be useful and finds application in di�erent scenarios of the Business Process Man-
agement, such as detection of di�erence in various in versions of the same process
models [��], clone detection in process model repositories [�,�] or generation of
synthetic process models with respect to reoccurring fragments [��].

In contrast to most of the approaches of subgraph isomorphisms that base on
a known subgraph that is searched against a bigger graph, our approach starts
by comparing the bigger graphs (i. e., process models). The goal is to detect and
extract the reoccurring subgraphs (RPFs), which are basically the reoccurring
structures (or subgraphs) of the compared process models. Thus, in the scope of
this work we first defined the underlying formal model of our approach and then
we described the approach that detects the RPFs of the BPMN �.� collection.
Our approach utilizes and customizes well established techniques of sub-graph
isomorphism as for example this of Ullmann’s algorithm [��] and we argued that
it is complete as it exhausts the search space. The presented approach currently
does not support cyclic structures. Therefore we detected the process models with
cyclic structures in a collection of �,��� real-world process models and validated
the RoSE algorithm against the remaining �,��� process models. Unlike similar
e�orts [�] the algorithm completed successfully in realistic times and discovered
�� RPFs, some of which are small and confirm the usage of the control-flow
workflow patterns, while other are more complex and indicate modeling trends.
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In future research we plan to extend the analyzed collection of process models
by including the models of the BPM Academic Initiative and other diverse
collections of real-world process models. For a more comprehensive approach,
we will extend the RoSE algorithm to support cycles and combine it with
existing techniques that apply textual or behavioral semantics, in order to detect
reoccurring structures of similar context. Moreover, we envision to improve the
performance of the algorithm by applying heuristic-based methods as these
proposed by Valiente and Martínez [��] and execute comparative performance
analysis against well known pattern discovery algorithms such as gSPAN [��]
and Gaston [��]. Subsequently, we will employ the RPFs detected by the RoSE
algorithm towards the generation of representative, executable BPMN �.� process
models that will be used as a test scenario to the first standard benchmark of
BPMN �.� compliant Workflow Management Systems.
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